174. The Thermal Unimolecular cis-trans-Isomerization of 1-Ethyl-2-methylcyclopropane.

By C. S. ELLIOTT and H. M. FREY.

cis-2-Ethyl-2-methylcyclopropane undergoes a reversible cis-transisomerization which, in an "aged" reaction vessel, is first-order and homogeneous. The rate constants, which are independent of the pressure from 3 to 100 mm., have been determined at nine temperatures between 396 and 446°, and the Arrhenius parameters evaluated. Whence,

 $k(cis \longrightarrow trans) = 10^{15 \cdot 08} \exp(-58,870/RT) \text{ sec.}^{-1}$.

Measurements of the equilibrium constants from 414° to 440° gave a leastsquares value of 1.2 kcal./mole for the enthalpy change. Occurring simultaneously with the geometrical isomerization, there is a slower structural isomerization to give several C_s-olefins.

THE thermal isomerization of cyclopropane¹ to propene and of alkylcyclopropanes² to olefins are among the best-authenticated examples of unimolecular reactions. Recently, it has been shown that substituted cyclopropanes undergo reversible cis-trans-isomerizations which also appear to be truly unimolecular.³ These geometrical isomerizations are faster than the corresponding structural transformations, and it has usually been possible to follow the kinetics of both reaction paths. The present Paper describes a continuation of this work with ethylmethylcyclopropane.

EXPERIMENTAL

cis-1-Ethyl-2-methylcyclopropane.—This was prepared by the action of methylene di-iodide and a zinc copper couple⁴ on cis-pent-2-ene. After fractional distillation and preparative gas chromatography, the product was more than 99% pure (gas chromatography). All olefins used were commercially available or were synthesized by normal procedures.

Apparatus.—A conventional "static "vacuum system was used. Only greaseless stopcocks with Viton A diaphragms were employed, so that the usual troubles due to absorption of vapours were virtually eliminated. Isomerizations were carried out in a cylindrical Pyrex reaction vessel (about 200 ml.) fitted with a thermocouple well and with a dead-space of 0.2%. Temperatures were determined using a platinum/platinum-rhodium thermocouple. The furnace was tapped at four points for external shunts, and the temperature gradient over the entire length of the reaction vessel could be kept to $\pm 0.2^{\circ}$. The furnace temperature was controlled by a Sunvic RT 3 R regulator and could be kept constant to better than $\pm 0.25^{\circ}$.

Analysis.—Reaction products were analysed by gas chromatography using a coiled copper column (20 ft. \times 0.17 in.) packed with 40-60 mesh Chromosorb P containing 20% w/w of di-2-cyanoethyl ether. Other details about the analytical system have been given previously.⁵

Procedure .-- The ethylmethylcyclopropane was introduced into the reaction vessel from a gas pipette. At the end of the run the reaction mixture was frozen into a previously evacuated detachable bulb (100 ml.) cooled in liquid oxygen. The sample in the bulb was flash-evaporated, and transferred by Toepler pump to the analytical system. Between runs, the reaction vessel was evacuated below 10^{-4} mm.

RESULTS AND DISCUSSION

In the temperature range 396-446° cis-1-ethyl-2-methylcyclopropane undergoes a reversible first-order homogeneous reaction, to give the trans-isomer to the extent of

¹ Chambers and Kistiakowsky, J. Amer. Chem. Soc., 1934, 56, 399; Pritchard, Sowden, and Trotman-Dickenson, Proc. Roy. Soc., 1953, A, 217, 563. ² Chesick, J. Amer. Chem. Soc., 1960, 82, 3277; Flowers and Frey, J., 1962, 1157; Proc. Roy. Soc.,

⁸ Rabinovitch, Schlag, and Wiberg, J. Chem. Phys., 1958, 28, 504; Schlag and Rabinovitch, J. Amer. Chem. Soc., 1960, 82, 5996; Flowers and Frey, Proc. Roy. Soc., 1960, A, 257, 122; Frey and Marshall, J., 1963, 5717.

⁴ Shank and Shechter, J. Org. Chem., 1959, 24, 1825.

⁵ Frey and Marshall, *J.*, 1962, 3052.

^{1961,} A, 260, 424.

 $74\cdot3-73\cdot2\%$ of the resulting equilibrium mixtures. Prior to kinetic runs, the reaction vessel was "aged" by heating samples of the cyclopropane for 1 hour at 440° until reproducible rate constants were obtained; this was rapidly achieved, and the process had to be repeated only if air was admitted to the vessel when it was hot.

A series of runs at various pressures from 3 to 100 mm. were carried out at $425 \cdot 6^{\circ}$ (Table 1). In each case the reaction time was 15 minutes. If k_1 and k_2 are the rates of the $cis \rightarrow trans$ - and $trans \rightarrow cis$ isomerizations, respectively, then, for runs starting with the pure cis-compound, $(k_1 + k_2) = (1/t) \ln [x_e/(x_e - x)]$, where x_e is the equilibrium

Table	1.

Isomerization c	of <i>cis-</i> 1	l-ethyl	-2-methy	vlcyclo	propane	at	425.6°.
-----------------	------------------	---------	----------	---------	---------	----	---------

Pressure (mm.)	100	27.5	22	16	15	11	7	5	$3 \cdot 2$
% of trans-isomer	31.49	31.49	31.16	31.06	31.47	31.19	31 ·10	31.50	31.30
$10^4(k_1 + k_2)$ (sec. ⁻¹)	6.280	6.280	6.298	6.302	6.285	6.296	6.300	6.278	6.292

concentration of the *trans*-isomer and x is its concentration after time t. In this pressure range the rate constant is clearly independent of pressure. In the remainder of the work a pressure of 5 mm. was always used.

As well as the *cis-trans*-isomerization, a series of simultaneous structural isomerization reactions occur in the present system. By analogy with other cyclopropane rearrangements no less than nine products are to be expected from the ethylmethylcyclopropane.

$$C_6$$
-Olefins $\stackrel{\Sigma k_4}{\longleftarrow} cis$ -Isomer $\stackrel{k_1}{\longleftarrow} trans$ -Isomer $\stackrel{\Sigma k_4}{\longrightarrow} C_6$ -Olefins

The olefin peaks on gas chromatograms were all very small, indicating that Σk_3 and Σk_4 were small compared with k_1 and k_2 . Olefins positively identified were *cis*- and *trans*-hex-2-ene, 2-ethylbut-2-ene, and 2-methylpent-1-ene. No attempts were made to identify other olefins since the peaks were too small to be measured quantitatively and were not completely resolved.

To determine the values of k_1 and k_2 , the values of the equilibrium constants had to be determined at various temperatures. These were measured directly by allowing the *cis*-cyclopropane to isomerize for increasing lengths of time until no further change occurred in the *cis*: *trans* ratio. Some values were checked by heating pre-mixed *cis*- and *trans*-ethylmethylcyclopropane. If Σk_3 is not equal to Σk_4 the values determined in this fashion are not the true equilibrium values. However, since Σk_3 and Σk_4 are small compared with k_1 and k_2 , the errors introduced by their neglect are less than the experimental errors of the determinations. Equilibrium constants were determined at five temperatures (Table 2). A plot of the logarithm of the equilibrium constant against 1/T was linear,

TABLE 2.

Equilibrium constants for the *cis*- and *trans*-isomerization.

ſemperature (°c)	414 ·1	419 ·7	$425 \cdot 6$	$432 \cdot 3$	440 ·0
Equilibrium constant	2.831	2.817	2.788	2.774	2.745

and a least-squares analysis of the data gave a value of 1.2 kcal./mole for the enthalpy change for the reaction.

Plots of log (equilibrium value of *trans*-cyclopropane minus measured value) against time were linear for runs carried out at nine different temperatures. At each temperature, values of $k_1 + k_2$ were determined from these plots by the least-squares method. Combination of these values with values for the equilibrium constants at the appropriate temperatures allowed the values of k_1 in Table 3 to be calculated, since $K = k_1/k_2$. From

Rare constants for the isomerization of cis-1-ethyl-2-methylcyclopropane.									
Temp. (°c) $10^{4}k_{1}$ (sec. ⁻¹)	396·7 0·7523	402·0 1·013	$407.8 \\ 1.524$	414·1 2·242	$419.7 \\ 3.227$	425·6 4·619	432·3 6·903	440·0 10·88	$446.5 \\ 15.59$

TABLE 3.

these results the Arrhenius parameters were calculated by least-squares, whence, $k_1 = 10^{15 \cdot 08} \exp(-58,870/RT)$ sec.⁻¹. Temperature fluctuations are probably the limiting factor on the accuracy with which the energy of activation has been determined, and introduce a maximum uncertainty of ± 500 cal.

A series of runs were carried out in a packed reaction vessel in which the surface : volume ratio was 8.2 times that in the normal vessel. Rate constants obtained in both vessels were identical within experimental error; hence, there can be no appreciable heterogeneous component of the reaction.

One series of runs at $436 \cdot 4^{\circ}$ was carried out starting with the *trans*-isomer; this was prepared by heating the *cis*-isomer and freezing out the *trans*-component after chromatographic separation. Within experimental error the calculated value for k_1 determined in this manner fell exactly on the Arrhenius plot.

That the *cis-trans*-isomerization is a true unimolecular transformation is further supported by the similarity of the kinetic features and parameters of this reaction to those for 1,2-dimethyl- and 1,2,3-trimethyl-cyclopropane.

One of us (C. S. E.) thanks the D.S.I.R. for a research studentship.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, SOUTHAMPTON. [Received, August 23rd, 1963.]

ITY, SOUTHAMPTON.